Embryonically expressed GABA and glutamate drive electrical activity regulating neurotransmitter specification.

نویسندگان

  • Cory M Root
  • Norma A Velázquez-Ulloa
  • Gabriela C Monsalve
  • Elena Minakova
  • Nicholas C Spitzer
چکیده

Neurotransmitter signaling in the mature nervous system is well understood, but the functions of transmitters in the immature nervous system are less clear. Although transmitters released during embryogenesis regulate neuronal proliferation and migration, little is known about their role in regulating early neuronal differentiation. Here, we show that GABA and glutamate drive calcium-dependent embryonic electrical activity that regulates transmitter specification. The number of neurons expressing different transmitters changes when GABA or glutamate signaling is blocked chronically, either using morpholinos to knock down transmitter-synthetic enzymes or applying pharmacological receptor antagonists during a sensitive period of development. We find that calcium spikes are triggered by metabotropic GABA and glutamate receptors, which engage protein kinases A and C. The results reveal a novel role for embryonically expressed neurotransmitters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Cell-Autonomous Mechanism of Activity-Dependent Neurotransmitter Switching

Activity-dependent neurotransmitter switching engages genetic programs regulating transmitter synthesis, but the mechanism by which activity is transduced is unknown. We suppressed activity in single neurons in the embryonic spinal cord to determine whether glutamate-gamma-aminobutyric acid (GABA) switching is cell autonomous. Transmitter respecification did not occur, suggesting that it is hom...

متن کامل

Target-dependent regulation of neurotransmitter specification and embryonic neuronal calcium spike activity.

Neurotransmitter specification has been shown to depend on genetic programs and electrical activity; however, target-dependent regulation also plays important roles in neuronal development. We have investigated the impact of muscle targets on transmitter specification in Xenopus spinal neurons using a neuron-muscle coculture system. We find that neuron-muscle contact reduces the number of neuro...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

Calibration of Neurotransmitter Release from Neural Cells for Therapeutic implants

In this work we quantified the in vitro calibration relationships between high frequency electrical stimulation and GABA and glutamate release in both mature retinoic acid differentiated P19 neurons and immortalized embryonic cortical cells engineered to express glutamic acid decarboxylase, GAD65. Extracellular glutamate and GABA was quantified by 2D gas chromatography and time of flight mass s...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 18  شماره 

صفحات  -

تاریخ انتشار 2008